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Abstract—Surface water contaminated by fecal bacteria can
cause diarrheal illness, threatening human’s health (especially
among children). In recent years, supervised machine learning
(ML) has been used to predict fecal indicator bacteria (FIB)
levels. However, training ML models is challenging and, in
some cases, even impractical due to sparsity of labeled data
in all locations (e.g., in rural areas or low-income countries).
In this paper, we introduce the largest water quality dataset
available collected from beaches in Chicago and San Diego, USA.
We utilized various models to predict historical FIB levels on
this dataset establishing strong baseline models for supervised
learning and transfer learning. Our models include Random
Forest (RF), extreme gradient boosting (XGBoost), and attention-
based tabular deep learning (TabNet) models. Additionally, given
the widespread use of large language models (LLMs), we have
fine-tuned the LLaMA3-8B model for regression in a tabular-
to-text setting. Our results show that supervised and unsuper-
vised domain adaptation methods can enhance transfer learning
performance. Specifically, the supervised methods, especially RF,
represent a promising solution for FIB level prediction, while
domain adaptation could be successfully employed to predict FIB
levels in locations where they are rarely measured.

Index Terms—Water Quality Prediction, Fecal Indicator Bac-
teria, Transfer Learning, Domain Adaptation

I. INTRODUCTION

High levels of bacteria in surface waters bring major
challenges in global public health due to causing diarrheal
disease, particularly among children and other more vulnerable
populations. For example, in 2019, unsafe drinking water
accounted for an estimated 419,000 deaths of children under
the age of 5 years in many countries (especially low- and
middle-income countries). Importantly, levels of the fecal in-
dicator bacteria (FIB) known as enterococci (ENT), measured
using the rapid quantitative polymerase chain reaction (qPCR)
method, predict the risk of contracting diarrheal illness among
swimmers at beaches [1]. Thus, the United Nations Sustainable
Development Goals (SDGs) point to the need to identify water
quality hazards and protect water sources (SDG 6 Targets 1

and 3), to communicate those hazards to communities (SDG
6 Target 6.b), to protect public health (SDG 3) and to design
sustainable urban systems to protect water sources (SDG 11).
However, measuring FIB levels in many areas of the world
(e.g., in rural areas of high-income countries or low-income
countries) is impractical due to fiscal, technical, and logistical
challenges. Even in locations where testing is done, there
is generally a 24-hour interval between the time of water
sampling and the time bacterial culture results are available.
By the time results are available, water quality can change
substantially, limiting the value of the FIB measurements for
alerting the public about hazardous conditions [2].

A variety of machine learning (ML) approaches have been
developed to make use of weather and other environmental
variables to predict FIB levels in high-income countries [3]–
[7]. Many of the FIB predictive variables - such as precip-
itation, temperature, solar irradiation, and wave height - are
available on the Web from U.S. and international meteorolog-
ical/atmospheric agencies. However, ML models of surface
water quality that have been developed so far using data from
one location may not be directly transferable to other locations
for which labeled data is scarce. This lack of direct transfer-
ability could be due to several reasons, including “domain
shift” or “distributional shift”, which refers to the fact that the
distribution of FIB and/or predictive variables may be different
between beaches used to train the models and beaches used
for model prediction. To account for distributional differences,
domain adaptation (DA) approaches [8] for adapting a model
from a data-rich “source” beach (such as a beach with surface
waters abundant in historical FIB data) to a data-poor “target”
beach (for which FIB data is limited, if at all available)
represent an attractive solution, which we aim to explore.

Towards this goal, our main contributions are as follows:
1) We first introduce a surface water quality dataset con-

sisting of approximately 20,000 FIB samples collected
at several Chicago and San Diego beaches, together



with the corresponding meteorological and water pre-
dictive variables retrieved. To our knowledge, this is the
largest dataset (with other published datasets containing
less than 10% of our sample size) for developing ML
models for surface water quality prediction based on
environmental variables in supervised, transfer learning
and domain adaptation settings;

2) Using the newly assembled dataset, we establish strong
supervised baselines using ensemble learning-based
models and deep attention-based tabular networks, and
LLM models that are trained and evaluated on data from
the same location (or group of beaches at a location);

3) We also develop transfer learning baselines, i.e., super-
vised learning models trained on “source” beaches and
tested on “target” beaches not included in the training;

4) We establish domain adaptation baselines, where models
trained on data from “source” beaches are adapted to
“target” beaches by using a small amount of FIB target
data and/or unlabeled target environmental data (i.e.,
data for which FIB levels are not available);

5) Finally, as a proof of concept, we design a Web app
that retrieves environmental data for a location of in-
terest from the Web and invokes our models to make
predictions about the risk of infection at the location.

An overarching, important contribution of our work is ad-
dressing the time-consuming and costly process of collecting
FIB data. We demonstrate that through domain adaptation, it
is no longer necessary to collect large amounts of FIB data
for every city or beach. By developing models in one location
and leveraging large amounts of readily available weather and
environmental data from other locations, we can predict water
quality across various locations with minimal or no additional
FIB data collection.

II. RELATED WORK

Chicago, USA, is home to some of the most “data rich”
beaches globally, with decades of intensive FIB monitoring of
15+ beaches per day, at least five days/week, throughout the
100-day summer “beach season.” Linear regression methods
were initially used to predict FIB levels [9]–[11]. Since then,
random forest methods have been used to identify predictors
to be used in statistical models of FIB at Chicago beaches
[12]–[14]. More recently, Lucius et. al. [3] utilized machine
learning to predict levels of E. coli bacteria (a type of FIB)
at Chicago beaches based on qPCR testing of Enterococcus
(ENT) together with water and atmospheric variables. Twenty
Chicago beaches were first grouped into 5 clusters. For each
cluster, one “feature” location was selected based on the maxi-
mum number of historical culture-based exceedances and used
as a proxy location for other locations in the same cluster. An
RF model was trained for the “feature” location in each cluster
using data collected between 2006 and 2015 and validated on
data from 2016 collected at the other locations in the cluster.
In the second phase of the project, models trained on data from
years 2015-2016 were tested live on newly collected data in
2017. Experimental results showed that the proposed hybrid

model that used ENT data from the “feature” beach to predict
E. coli at other similar beaches improved sensitivity from 3.4%
to 11.2% compared with a prior-day nowcast model. While this
work considered a transfer learning scenario between a feature
beach and other correlated beaches in its cluster, it did make
use of ENT (in addition to environmental variables) to predict
E. coli. As opposed to that, we explore transfer learning and
domain adaptation when only environmental variables are used
for predicting ENT (without including any other types of FIB
as predictors). Guo et. al. [5] classified FIB exceedances (0/1)
determined by thresholding FIB levels measured at beaches in
Hong Kong using the EasyEnsemble (EE) algorithm [15], an
ensemble of AdaBoost learners trained on different balanced
bootstrap samples.1 Likewise, FIB levels were modeled using
ML approaches for sites in Croatia by Grbčić et. al. [7] and
southern California by Searcy et. al. [4]. However, none of
these works studied domain adaptation approaches, although
the work by Grbčić et. al. [7] explored the use of transfer
learning between a source beach and a target beach.

Publicly available datasets for predicting FIB concentrations
in water samples include Guo et. al. [5] and Searcy et. al. [4].
Guo et. al. [5] published a 30-year E. coli dataset relating
to three locations in Hong Kong, China, containing 3939
Enterococcus samples and including up to 8 environmental
features, such as past rainfall and previous day’s solar ra-
diation, and used it to study class-imbalance methods for
predicting high levels of E. coli. Searcy et. al. [4] published a
20-year dataset relating to three locations in the U.S. state of
California, containing 4805 culture-based Enterococcus and E.
coli samples from both high-frequency and routine monitoring,
while including up to 33 environmental features. They used
this dataset to study high-frequency sampling toward assessing
water quality at sites with little or no historical routine
monitoring data. The City of Chicago has published ENT and
EC data online going back to 2006, although the city does not
publish accompanying environmental features related to the
data [16]. The Water Quality Portal, developed by the U.S.
Environmental Protection Agency, U.S. Geological Survey,
and National Water Quality Monitoring Council, also provide
FIB data from numerous sites located throughout the United
States, although environmental data are typically not included
[17]. Bourel [18] utilized a simulated dataset which can be re-
generated using their published codebase. In general, however,
datasets used in previous work have often gone unpublished,
and are not publicly available [3], [7], [12], [19]–[29].

In our paper, we construct a dataset based on beaches
located in the United States for predicting FIB levels (specifi-
cally, ENT) based on environmental conditions. To our knowl-
edge, this is the largest dataset for this task, and we will
make it publicly available upon publication of this work.
We also established strong supervised, transfer learning, and
domain adaptation baselines using our dataset. In addition, we
designed a Web app, with our models in the back-end, to be

1https://imbalanced-learn.org/stable/references/generated/imblearn.
ensemble.EasyEnsembleClassifier.html



TABLE I: Description and statistical properties of features.

Features

Name Descriptions Chicago: MeanSTD (%Missing) San Diego: MeanSTD (%Missing)

awind (m/s) alongshore component of wind speed -0.1293.151(24.496) 0.0011.975(0.000)
owind (m/s) offshore component of wind speed -0.7243.151(24.496) 0.7641.717(0.000)
WVHT (m) significant wave height in meters 0.2602.882(46.614) 1.0340.474
Wtemp B (◦C) sea surface temperature 20.8443.020(29.049) 18.8642.917(0.000)
atemp (◦C) air temperature 21.1933.328(74.795) 18.8704.070(0.000)
dtemp (◦C) dew point temperature 17.6471.309(74.795) Feature Not Available
lograin3T (Inch) log10 transform of past 3 days rainfall -1.7081.674(10.944) 1.2094.831(0.000)
lograin7T (Inch) log10 transform of past 7 days rainfall -0.5531.143(21.440) 3.6879.942(0.000)
wet3 (–) if it rained more than 0.1’ in the past 3 days 0.5030.498(10.944) 0.1840.388(0.000)
wet7 (–) if it rained more than 0.1’ in the past 7 days 0.8440.371(21.440) 0.3660.481(0.000)
dtide 1 (Feet) change in tide in the last hour 0.0010.078(5.792) Feature Not Available
dtide 2 (Feet) change in tide in the last 2 hour 0.0010.083(5.792) Feature Not Available
tide gtm (–) if the value of tide is greater than mean tide 0.5310.499(5.792) 0.6040.488(0.000)
tide (Feet) the water level in feet above or below the mean lower

low water
177.0610.190(5.792) 3.5941.712(0.000)

DPD (Sec) dominant wave period, seconds, is the period with the
maximum wave energy

3.9790.220(51.897) Feature Not Available

comment (–) Visual characteristics such as presence of sand, mud,
residue, particles, wood chips, dirt, plants, etc.

Not Applicable Feature Not Available

turbidity (NTU) an expression of the optical property that causes light
to be scattered and absorbed rather than transmitted
in straight lines through the sample

3.4834.376(20.800) San Diego dataset has an alternative
feature called Visibility. turbidity and
visibility (measured by meters) are not
comparable. 873014819.2(0.000)

rad (watts/meter2) The amount of solar radiation received per unit area
by a perpendicular surface

351.164252.721(37.747) 2942.1153328.580(0.000)

ENT (CCE/100 mL) Concentration of ENT bacteria. dimention: calibrator
cell equivalent per 100 ml.

439.6403.350(0.000) 546.8412119.159(0.000)

used to collect environmental data from the Web and to make
predictions about water quality in real-time.

III. SURFACE WATER QUALITY DATASET

As a first significant contribution of this work, we assemble
a large surface water bacteria level dataset to further research
in this area. The dataset contain daily measurements of the
concentration of Enterococcus (ENT) from 19 beaches in
Chicago from 2017 to 2022, and 14 beaches in San Diego from
2014 to 2021. To create the Chicago and San Diego subsets,
we aimed to extract features similar to those in the existing
California high-frequency water quality dataset [4]. However,
some attributes from the California dataset were not available
for beaches in our datasets, while some attributes included
in our datasets are not present in the California dataset. The
attributes in our datasets (shown in Table I) include various en-
vironmental characteristics such as wind, wave, precipitation,
tide, solar radiation, air and water temperature, and turbidity.

Note also that not all features from the Chicago dataset
were available for San Diego, and vice versa. For instance,
turbidity data is collected for Chicago, while a similar feature
called visibility is collected for San Diego, but these two are
not directly comparable. Additionally, certain features such
as comment, previous hours tide, and DPD, present in the
Chicago dataset, are not available for San Diego.

A. Chicago Data

Water samples were collected at Chicago beaches at 6
AM every morning to measure the ENT levels during the
beach season (for approximately 100 days from late May
to early September) and analyzed for ENT levels using the
qPCR method [30]. Results were available by 1:00 PM and
used for water quality advisories at beaches and on the

Chicago Park District’s websites and social media outlets. FIB
levels and turbidity were generated by the water microbiology
laboratory on behalf of the Chicago Park District. Hourly
precipitation, wind, and temperature data were gathered from
the Midwest Regional Climate Center for the Midway Airport
weather station, approximately 15 km from the shore of Lake
Michigan. Wind direction and wind speed were converted to
the speed of wind perpendicular to the beach angle. Wave
and tide data were obtained from the National Oceanographic
and Atmospheric Administration (NOAA) National Data Buoy
Center for buoy 45198, Ohio Street, and Calumet Harbor buoy.
Solar radiation for each beach group (beaches are grouped
based on their location) was obtained from the National Solar
Radiation Database using the coordinates of a beach near the
group’s center.

B. San Diego Data

Beaches included in the San Diego subset were those within
25 km of San Diego Bay. Because FIB levels at those beaches
rarely exceeded the 2012 EPA Recreational Water Quality
Criteria, we further restricted the dataset to beaches with a
90th percentile ENT value of 100 or greater. Additionally, we
excluded from the dataset beaches with fewer than 50 days
of beach monitoring, resulting in a dataset of 14 San Diego
beaches. FIB levels for San Diego beaches were obtained
from the EPA BEACON database [31]. Like the Chicago data,
enterococci measurement were the FIB metric analyzed; unlike
the Chicago data, enterococci were measured using culture,
rather than qPCR method. Many San Diego area beaches
contain more than one sampling location which are generally
more than 1km apart; FIB values from sampling locations
were analyzed individually rather than averaging the values



up to the beach level. Water samples collected at atypical
times (before 6AM or after 2PM) were excluded. Because
the 2014 BEACON data did not include San Diego area water
sample collection times, we substituted median hour value for
sample collection in the other years, 10AM, for San Diego
beaches in 2014. On days for which more than one water
sample was collected per sampling location, we calculated
the mean ENT of measurements made during a three-hour
interval beginning with the collection of the first water sample
that day at that location. The average number of samples at
a given monitoring location over the 8 year period (2014-
2021) was 624 (230 min, 1031 max). ENT values were linked
to weather data temporally and spatially. Wind direction was
reported relative to the beach angle in order to calculate the
onshore and offshore wind speed. Beach angles were manually
calculated by viewing the geocode of the monitoring location
on a map alongside shoreline data available from NOAA [32].

Total prior day solar direct normal irradiance (DNI) data
from a single location near San Diego were linked to the
ENT values. Wind speed (m/s), wind direction (degree), air
temperature (C), wave height (m), and water temperature (C)
from the prior hour before FIB sampling were also linked
to the ENT values. Total precipitation (mm) data in the 72-
hours (3 days) and 168-hours (7 days) preceding FIB sampling
were further linked to ENT values. Tide level was interpolated
between the highest and lowest values (m) and linked to ENT
values on the hour of sampling. Solar DNI data were retrieved
from the NREL National Solar Radiation Database. Buoy data
was retrieved from NDBC. Wave height and water temperature
data were available from a number of nearby buoys with the
distance to buoy per observation being on average between
12.2 km for wave height (332 meters min, 268.0 km max)
and 9.3 km for water temperature (1.4 km min, 46.7 km max).
As buoy data were not always available from a given buoy,
data from the nearest buoy were used for each individual FIB
sample taken at a given monitoring location. Wind speed, wind
direction, and air temperature data were collected from the
weather station at San Diego International Airport, available
from NOAA’s Global Hourly Integrated Surface Database.
Verified high and low tide level data were collected from
two nearby tide stations via the NOAA Tides and Currents
CO-OPS API for data retrieval. The average distance from a
monitoring location to its nearest tide level station was 8.0 km
(284 meters min, 20.3 km max).

C. Statistical Analysis of FIB Data from Beaches

We designed two types of transfer learning experiments. In
the first set, we trained models on data from one city and
evaluated their performance on data from another city. In the
second set, we divided the 19 Chicago beaches into three
groups based on their geographical location: Southern (SB),
Central (CB), and Northern (NB) beaches. For this transfer
learning task—where models are trained on one group of
beaches and tested on another—it is expected that the beaches
within the same group will share similar characteristics, while
being distinct from beaches in other groups.

Fig. 1: This heatmap shows the JS divergence between
Chicago groups of beaches and between Chicago and San
Diego. The darker color indicates a higher divergence and less
similarity between the distributions of data.

To ensure compatibility between the San Diego and Chicago
datasets for transfer learning, we removed any features that
were not common between them. It is important to note that
different feature sets were used in the Chicago vs. San Diego
experiments compared to the beach group experiments.

To test whether or not the data from two cities or two
group of beaches are statistically different, we used the Jensen-
Shannon (JS) divergence metric.We calculated the pairwise JS
divergence between data collected at groups of beaches as:

DJS(p∥q) =
1

2
DKL(p∥

p+ q

2
) +

1

2
DKL(q∥

p+ q

2
)

where DKL(p∥q) =
∑
x∈X

P (x)log(
P (x)

Q(x)
)

The JS divergence metric results are shown in Fig. 1 and
suggest that the current groups may benefit from transfer
learning and domain adaptation. The right section of the figure
corresponding to the Chicago-San Diego comparison using the
JS divergence shows a high divergence between beaches in
different cities.

D. Preprocessing
As part of our data preprocessing, all numerical features

were scaled between zero and one using the formula below:

xscaled =
x− xmin

xmax − xmin

After assembling the dataset, some features were unavail-
able for some dates or beaches, especially during 2020, when
FIB monitoring was not performed as beaches were closed due
to the COVID-19 pandemic. We removed the features with
more than 50 percent missing values to address the missing
data issue. For the remaining missing values, we applied
mean imputation for each attribute and added a small amount
of noise to preserve variability. Tables I show the statistical
properties of the features and the number of available data in
each location, respectively. Following [4], the values for the
regression target, ENT, were log10 transformed.



Fig. 2: A sample text prompt used to train and test the LLaMA-
3 model.

E. Benchmark Subsets

The train/validation/test split is based on the timeline, i.e.,
models were trained and tuned on older samples and tested on
more recent samples. Specifically, training and validation were
performed on data spanning 2017-2019, while data from 2021
and later were used for testing. The train/validation/test split
will be made available to ensure reproducibility and to enable
further improvements on the task of predicting surface water
quality in transfer learning and domain adaptation settings.

IV. METHODOLOGY

A. Supervised Machine Learning Models

a) Traditional Machine Learning Models: We consider
the following machine learning models for our regression
tasks. Following [4], [6], ensemble trees and gradient boosting
methods show promising results in water quality regression
tasks, so we chose Random Forest (RF) and XGBoost [33].
RF is an ensemble learning model that combines the output
of multiple decision tree models, and XGBoost is a gradient-
boosting algorithm.

b) Deep Learning Models: We used TabNet as another
baseline models. TabNet [34] is a strong deep neural network
model for tabular data that uses an attention mechanism to
weigh each feature’s importance selectively.

In addition to tabular data models, we also used a large
language model in our study, specifically Llama-3, fine-tuned
on our tabular training data converted to text, due to the
current trends of using language models for regression and
classification tasks based on tabular data. We generated text
prompts using a format of {Prompt Question}+{Serialized
Features}. A sample prompt is shown in Figure 2. We fine-
tuned the LLaMA-3 model using the LoRa adaptor [35].

B. Supervised and Unsupervised Domain Adaptation

In supervised domain adaptation (SDA), labeled source data
(XS , yS) is used together with a small amount of labeled target
data (XT , yT ) to train a model h for predicting future target
data. We experiment with two supervised DA approaches,
balanced weighting [36] and feature augmentation [37]. In
unsupervised domain adaptation (UDA), labeled source data
(XS , yS) and unlabeled target data XT are used to train a
model h for predicting future target data. We experiment with
two unsupervised DA approaches, correlation alignment [38],
and subspace alignment [39].

a) Balanced Weighting: In the BWT approach [36],
a model h is trained to minimize a modified loss, which
accounts for both agreement between predicted and ground
truth values on target data, as well as agreement on source
data. However, the loss on target data L(h(XT ), yT ) and the
loss on source data L(h(XS), yS) have different weights to
reflect the importance of the target relative to the source.
Formally, the model h is obtained by minimizing the following
modified loss:

min
h

(1− γ)L(h(XS), yS) + γL(h(XT ), yT )

where γ is a tunable hyper-parameter that defines the extent to
which target training data should be prioritized. Both labeled
source data (assumed to be large) and labeled target data
(limited) are thus utilized when training a BWT model.

C. Supervised Baseline Models

a) Feature Augmentation: In the FA approach [37], the
source and target training data are augmented by creating three
versions of the feature set: a version that is shared between
source and target (representing features that are predictive
for both source and target data), a version specific to source
(which has null values in the target) and a version specific to
target (which has null values in the source). Specifically, for
source the features x are transformed into X̃S = (x,x, 0⃗),
while for target the features are transformed into X̃T =
(x, 0⃗,x). A model h is trained on the combined feature-
augmented source/target data by minimizing the standard loss:

min
h

L(h(X̃S ∪ X̃T ), (yS ∪ yT ))

Similar to BWT, in FA both labeled source and target data are
used to train an FA model.

b) Correlation Alignment: In CORAL [38], the goal is
to minimize the domain variance between the source and
target data by aligning the source and target distributions
through the means of second-order statistics estimated solely
from unlabeled data. Specifically, covariance statistics CS and
CT are estimated for source and target data, respectively.
The source covariance matrix CS is used to perform source
“whitening”, i.e., to transform the source data such that its
covariance matrix becomes the identity. Subsequently, the
target covariance matrix CT is used to “re-color” the source
data, so that the source and target distributions become similar.



TABLE II: Regression results for supervised models. The performance is recorded using relative rRMSE (the lower the values
the better). Random Forest (RF), XGBoost, TabNet, and LLaMA-3-8B models are employed to calculate the values for logENT.
The performance in blue corresponds to models that perform better in this task.

Methods \ Source Beaches NB CB SB Chicago San Diego

RF 0.334 0.358 0.311 0.374 0.597
XGBoost 0.341 0.402 0.353 0.378 0.593
TabNet 0.364 0.358 0.331 0.421 0.624

LLaMA-3 0.358 0.383 0.363 0.393 0.965

Formally, a linear transformation A of the source data can be
obtained as a solution to the following minimization problem:

min
A

∥∥ATCSA− CT

∥∥2
F

where ∥·∥2F denotes the Frobenius norm of a matrix and is
used as a distance metric. The transformed source data can
then be used to train models for the target domain, given that
the two domains have now similar distributions.

c) Subspace Alignment: In SA [39], the goal is to
reduce the domain variance by aligning the source and target
subspaces represented by their respective eigenvectors induced
using principal component analysis. This is achieved by iden-
tifying a transformation matrix M that transforms the source
subspace base ES into the target subspace base ET (where
ES and ET are given by the eigenvectors corresponding to
the highest k eigenvalues in source and target, respectively).
The transformation matrix M in the subspace alignment is
obtained as a solution to the following minimization problem:

min
M

∥ESM − ET ∥2F

where ∥·∥2F , as before, denotes the Frobenius norm of a matrix.
As for CORAL, the transformed source data is subsequently
used to train a model for the target data.

d) Domain Adaptation for LLaMA models: To apply
domain adaptation for the LLaMA-3 models, we augmented
the source training data by adding a sample of 10% instances
from the target training dataset (the same instances that were
used in SDA). Additionally, we added a new feature called
”location” to the feature set of domain adaptation training and
testing data.

V. EXPERIMENTS AND RESULTS

We trained our models utilizing attributes with no more than
50 percent missing data. Training involved employing k-fold
cross-validation and grid search for hyper-parameter tuning.
To ensure the results’ statistical significance, the training and
testing processes were executed five times, and the average
performance across these runs is reported.

A. Metrics

To assess the performance of the models, we employed
the relative root mean squared error (rRMSE) as the primary
evaluation metric. This metric is defined as follows:

RMSE =

√√√√ 1

N

N∑
1

(ypred − y)2, and rRMSE =
RMSE

ȳ

The utilization of rRMSE facilitates comparisons across
datasets in different experiments. Normalizing RMSE by the
average target value (ȳ) results in rRMSE values in the [0,1]
interval, thus being independent of the target variable scale.

B. Supervised Learning

In our regression task, we explored RF, XGBoost, TabNet
and Llama-3-8B (8 billion parameters) models for predicting
logENT values. The results of this experiment are shown in
Table II. We trained our supervised models on the Chicago and
San Diego datasets, and we split the Chicago dataset based on
groups of beaches and trained and tested the models on each
group.

As indicated in Table II, the Random Forest (RF) and
XGBoost models demonstrated more promising results for our
regression task. Random Forest performed best across most
source domains, with the exception of the San Diego dataset,
where XGBoost outperformed it. Interestingly, the LLaMA-
3 models performed strongly on the Chicago beach groups,
outperforming TabNet in 3 out of 5 cases and even surpassing
XGBoost in one instance.

Generally, we observe a higher rRMSE for the San Diego
dataset, which might be attributed to differences in data
collection methods for ENT values that results in difference in
data distribution, or the inherent characteristics of the dataset.

C. Transfer Learning

For our transfer learning experiments, we transfer from one
group of Chicago beaches to another and one, or from one city
to another. Same timeline-based splits as in the supervised case
are used for this experiment. Our regression results for this
second experiment are shown in Table III, in the TL (transfer
learning) rows, and for easier comparison, the rRMSE values
for supervised models are also mentioned in the Table III–
Supervised rows. As expected, the rRMSE results are worse
for TL as compared to the supervised learning. Note that, the
results in Tables II represent lower bounds for the transfer
learning and domain adaptation results.

In Table III, for the transfer learning task, regressors trained
on CB generally outperform those trained on NB and SB
data. For example, the RF model transferred from CB to NB
outperforms the model transferred from SB to NB (0.326 vs.
0.368). This trend holds true when transferring from CB and



TABLE III: Regression results measured by rRMSE for transfer learning and domain adaptation between Chicago groups of
beaches. An improvement over the transfer learning model is marked with green . Best domain adaptation method for each
test set is showed using bold font. The lower rRMSE scores show a better performance. Timeline split using 2018 and prior
for train/development and post 2018 for test.

Trained on NB CB SB Chicago San Diego

Model Approaches CB SB NB SB NB CB San Diego Chicago

RF

Supervised NB–NB: 0.334 CB–CB: 0.358 SB–SB: 0.311 Chi–Chi: 0.374 San–San: 0.597

TL 0.426 0.323 0.326 0.317 0.368 0.462 0.747 0.528

DA

FA 0.360 0.312 0.325 0.311 0.329 0.353 0.588 0.374
BWT 0.391 0.315 0.313 0.301 0.340 0.419 0.587 0.375

CORAL 0.475 0.330 0.328 0.326 0.368 0.479 0.747 0.511
SA 0.456 0.333 0.326 0.308 0.353 0.443 0.799 0.448

XGBoost

Supervised NB–NB: 0.341 CB–CB: 0.402 SB–SB: 0.353 Chi–Chi: 0.378 San–San: 0.593

TL 0.436 0.361 0.350 0.353 0.419 0.51 0.76 0.449

DA

FA 0.391 0.341 0.329 0.339 0.334 0.393 0.616 0.362
BWT 0.402 0.339 0.341 0.331 0.359 0.448 0.615 0.365

CORAL 0.468 0.358 0.359 0.352 0.424 0.513 0.777 0.444
SA 0.456 0.362 0.366 0.344 0.372 0.473 0.813 0.483

TabNet

Supervised NB–NB: 0.364 CB–CB: 0.358 SB–SB: 0.331 Chi–Chi: 0.421 San–San: 0.624

TL 0.443 0.325 0.334 0.319 0.386 0.471 1.018 0.623

DA

FA 0.422 0.334 0.340 0.319 0.373 0.404 0.594 0.422
BWT 0.405 0.355 0.347 0.324 0.389 0.432 0.650 0.439

CORAL 0.451 0.320 0.348 0.323 0.386 0.465 0.784 0.572
SA 0.421 0.326 0.333 0.332 0.368 0.425 0.809 0.586

LLaMA-3 8B
Supervised NB–NB: 0.358 CB–CB: 0.383 SB–SB: 0.363 Chi–Chi: 0.393 San–San: 0.965

TL 0.388 0.349 0.352 0.342 0.367 0.388 0.780 0.864

DA 0.382 0.317 0.345 0.336 0.344 0.392 0.771 0.742

NB to SB, and applies to XGBoost, TabNet, and LLaMA-
3 models as well. Therefore, CB serves as the best source
domain for predicting NB and SB test data. Between NB and
SB as source datasets, NB models consistently outperform SB
models. For instance, the RF model trained on NB achieves
an rRMSE of 0.426 on CB, while the RF model trained on
SB has an rRMSE of 0.462. This trend is also observed for
XGBoost and TabNet, but not for LLaMA-3. Thus, the best
source domain for the CB dataset is NB.

To analyze Chicago and San Diego transfer learning, we
observe a significant increase in rRMSE when transferring
between the two cities compared to supervised learning within
the same city. For instance, there is an increase from 0.374 to
0.528 when transferring from Chicago (source) to Chicago
(target) versus from San Diego (source) to Chicago (target)
using the RF model or when transferring from Chicago
(source) to San Diego (target), with an increase from 0.624 to
1.017 for the TabNet model. This trend generally occurs for
all of the models. This poor performance in transfer learning
between Chicago and San Diego can be explained by the
substantial differences between the two datasets, as highlighted
in Figure 1, since the cities differ significantly—one is next
to a saltwater body, and the other is beside a freshwater lake.

We observe that the RF models consistently outperform all
other machine learning methods, including LLaMA-3, in both
the Chicago beach group experiments and the Chicago-San

Diego transfer learning experiments. TabNet and LLaMA-3
show comparable performances, with each outperforming the
other in different cases.

D. Supervised and Unsupervised Domain Adaptation

Finally, we analyze two supervised and two unsupervised
DA algorithms for out traditional machine learning algo-
rithms and TabNet model, and an augmentation based do-
main adaptation method for LLaMA-3 models. FA (Feature
Augmentation) and BWT (Balanced Weighting) are supervised
DA (SDA) algorithms, and CORAL (Correlation Alignment)
and SA (Subspace Alignment) are unsupervised DA (UDA)
algorithms. The SDA algorithms use 10 percent of labeled
target training data (selected at random), while the UDA
models use all the target training data as unlabeled. LLaMA-3
domain adaptation models receive 10 percent of the target’s
training data, which are then added to the source training data
to enhance model performance during the adaptation process.

The hyper-parameters of the BWT and CORAL mod-
els were fine-tuned in the training process. Gamma hyper-
parameter in BWT and Lambda hyper-parameter in CORAL
correspond to the importance given to the target labeled data
and the intensity of adaptation, respectively.

By analyzing the results in Tables III — specifically, DA
rows and TL, it can be seen that in the majority of the cases
considered, the domain adaptation methods helped improve the



results. Based on Table III—DA rows, CB models remain the
best source for NB and SB as the target after domain adapta-
tion, similar to the results seen in transfer learning. However,
in some cases (with TabNet and LLaMA-3), transferring from
NB to SB results in a lower rRMSE compared to transferring
from CB to SB. For predicting CB as the target domain, NB
continues to be the best source domain for most of the cases,
but the best predictor for CB after domain adaptation is trained
on SB data.

Chicago-San Diego domain adaptation demonstrates a sig-
nificant improvement in performance. A particularly interest-
ing observation is that, after the drastic increase in rRMSE
observed during transfer learning, domain adaptation models
actually achieved better performance than supervised models.
For example, transferring the RF model from San Diego to
Chicago with domain adaptation reduced the rRMSE from
0.747 to 0.587, even surpassing the supervised learning models
trained directly on the San Diego dataset (0.597).

The majority of models showed improvements with FA
and BWT, while fewer improvements were observed with
CORAL and SA. This is understandable, as CORAL and SA
are UDA methods, which are generally expected to perform
worse than SDA approaches. Additionally, the augmentation
based domain adaptation method applied to the LLaMA-3
model demonstrated a significant improvement (except one
out of eight cases), further proving that this approach can be
effectively utilized with LLMs for DA in a regression setting.

VI. WEB APPLICATION

To showcase the potential use of our models, we developed
a proof-of-concept Web application that utilizes the most
accurate predictive model in the back-end to estimate the FIB
levels for a given location. While the environmental variables
could be retrieved directly from the Web for a location of
interest, in the current prototype, they are provided by the user
or filled in using default values (representing the most common
values in our dataset). Once the values of the environmental
variables are filled in, the user can push the “Predict” button,
and the best model is invoked to make a prediction on the
current data point. The results are presented to the user in
an easy-to-understand format, captured by three values, Green
(safe), Orange (warning), and Red (danger), which represent
three different categories of FIB levels. Specifically, Green
represents FIB concentrations smaller than 300 cce (calibrator
cell equivalent) and do not pose any danger, Orange repre-
sents concentrations between 300 cce and 800 cce, indicating
slightly unsafe water, while Red represents concentrations that
exceed 800 cce and highlight hazardous conditions. As a
future extension of the app, we envision forecasting the water
quality at a location for several days based on forecasted
environmental variables so that the users can plan recreational
water activities ahead of time. Alternatively, the app could
show the water quality at several beaches around a location
of interest, in case the user wants to target different beaches
in that area.

Ultimately, the application should be capable of retrieving
weather and environmental data based on a given location
and utilizing pre-trained models to make predictions. Fig. 3
provides a preview of our web application. In the top image,
the results for a query regarding a beach in Chicago are shown.
The second and third images display additional information
about water quality, such as the quality of nearby beaches
and predicted water quality for the following days, based on
retrieved environmental data.

VII. CONCLUSIONS AND DISCUSSION

Our research is motivated by the global challenge of
waterborne diseases and a paucity of FIB monitoring data,
which is predictive of waterborne disease occurrence. We
first introduced a surface water quality dataset consisting of
approximately 20,000 FIB samples collected from Chicago
and San Diego beaches, which to our knowledge, is the
largest dataset of its kind. With this dataset, we explored a
diverse range of machine learning models and the regression
capabilities of large language models to predict FIB levels
in surface waters. We used weather and other types of data
to investigate transfer learning and assess the effectiveness of
domain adaptation on the collected data.

We employed a group of ensemble learning, gradient boost-
ing, and neural network models; our experiments and analysis
demonstrate that the results for RF, XGBoost models were
promising in both baseline supervised learning and transfer
learning settings. LLaMA-3 model cannot outperform the
RF and XGBoost models but surprisingly the results are
close. Note that we used the smaller version of the model
(8B). It is expected that a larger model might outperform
traditional ML models. We examined transfer learning within
Chicago dataset by grouping the beaches into three groups and
training the models in each group separately, and between
the cities. Applying SDA and UDA methods enhanced the
transfer learning performance further. In our regression task,
the UDA methods did not improve the XGBoost and TabNet
performance, but the results of the SDA methods were promis-
ing, especially with RF models. For our LLaMA-3 model we
introduced an augmentation based domain adaptation method
that significantly improved the results.

A limitation of this work is that Chicago and San Diego
beaches are largely protected from wastewater discharge ex-
cept following very heavy precipitation; that may not be the
case in many surface waters elsewhere. Nevertheless, our
findings suggest opportunities to extend DA work to water
quality monitoring in settings where FIB levels are rarely
measured; the expensive process of gathering vast FIB data
can be transited to minimal or none using proposed domain
adaptation models, more over, the existance of these models
will allow us to use the massive weather and environmental
data available on the web to predict the bacteria levels. We
believe our work has a strong social impact on improving
public health in locations worldwide. The outcomes of our
study could be especially useful for vulnerable populations,
e.g., children and the elderly.



Fig. 3: Web Application Interface: The web application will receive the location and environmental information from the user
and displays the prediction results. The results are summarized using three values: safe/green, warning/yellow, danger/red.
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